Near-Minimax Optimal Classification with Dyadic Classification Trees
نویسندگان
چکیده
This paper reports on a family of computationally practical classifiers that converge to the Bayes error at near-minimax optimal rates for a variety of distributions. The classifiers are based on dyadic classification trees (DCTs), which involve adaptively pruned partitions of the feature space. A key aspect of DCTs is their spatial adaptivity, which enables local (rather than global) fitting of the decision boundary. Our risk analysis involves a spatial decomposition of the usual concentration inequalities, leading to a spatially adaptive, data-dependent pruning criterion. For any distribution on (X,Y ) whose Bayes decision boundary behaves locally like a Lipschitz smooth function, we show that the DCT error converges to the Bayes error at a rate within a logarithmic factor of the minimax optimal rate. We also study DCTs equipped with polynomial classification rules at each leaf, and show that as the smoothness of the boundary increases their errors converge to the Bayes error at a rate approaching n, the parametric rate. We are not aware of any other practical classifiers that provide similar rate of convergence guarantees. Fast algorithms for tree pruning are discussed.
منابع مشابه
Dyadic Classification Trees via Structural Risk Minimization
Classification trees are one of the most popular types of classifiers, with ease of implementation and interpretation being among their attractive features. Despite the widespread use of classification trees, theoretical analysis of their performance is scarce. In this paper, we show that a new family of classification trees, called dyadic classification trees (DCTs), are near optimal (in a min...
متن کاملMultivariate Dyadic Regression Trees for Sparse Learning Problems
We propose a new nonparametric learning method based on multivariate dyadic regression trees (MDRTs). Unlike traditional dyadic decision trees (DDTs) or classification and regression trees (CARTs), MDRTs are constructed using penalized empirical risk minimization with a novel sparsity-inducing penalty. Theoretically, we show that MDRTs can simultaneously adapt to the unknown sparsity and smooth...
متن کاملAdaptive Minimax Classification with Dyadic Decision Trees
Decision trees are surprisingly adaptive in four important respects: They automatically (1) adapt to Tsybakov’s “noise” condition; (2) focus on data distributed on lower dimensional manifolds; (3) reject irrelevant features; (4) adapt to Bayes decision boundary smoothness. In this paper we examine a decision tree based on dyadic splits that adapts to each of these conditions to achieve minimax ...
متن کاملOn the Adaptive Properties of Decision Trees
Decision trees are surprisingly adaptive in three important respects: They automatically (1) adapt to favorable conditions near the Bayes decision boundary; (2) focus on data distributed on lower dimensional manifolds; (3) reject irrelevant features. In this paper we examine a decision tree based on dyadic splits that adapts to each of these conditions to achieve minimax optimal rates of conver...
متن کاملCORT: classification or regression trees
In this paper we challenge three of the underlying principles of CART, a well know approach to the construction of classification and regression trees. Our primary concern is with the penalization strategy employed to prune back an initial, overgrown tree. We reason, based on both intuitive and theoretical arguments, that the pruning rule for classification should be different from that used fo...
متن کامل